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ABSTRACT

The James Webb Space Telescope (JWST) is nearing its launch date of 2018, and is
expected to revolutionize our knowledge of exoplanet atmospheres. In order to specif-
ically identify which observing modes will be most useful for characterizing a diverse
range of exoplanetary atmospheres, we use an information content based approach com-
monly used in the studies of Solar System atmospheres. We develop a system based upon
these information content methods to trace the instrumental and atmospheric model
phase space in order to identify which observing modes are best suited for particu-
lar classes of planets, focusing on transmission spectra. Speci�cally, the atmospheric
parameter space we cover is T=600-1800 K, C/O=0.55-1, [M/H]=1-100� Solar for a
R=1.39 RJ , M=0.59 M J planet orbiting WASP-62-like star. We also explore the in-
uence of a simpli�ed opaque gray cloud on the information content. We �nd that
obtaining broader wavelength coverage over multiple modesis preferred over higher
precision in a single mode given the same amount of observingtime. Regardless of
the planet temperature and composition, the best modes for constraining terminator
temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the
target's host star is dim enough such that the NIRSpec prism can be used, then it can
be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more
than two modes, should be carefully analyzed because sometimes the addition of a third
mode results in no gain of information. In these cases, higher precision in the original
two modes is favorable.
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1. Introduction

The James Webb Space Telescope (JWST) is equipped with eleven di�erent observation modes
across eight di�erent wavelength ranges and six di�erent spectral resolving powers that can all be
used for transmission spectroscopy of exoplanets. While several studies have sought to identify
what the limits of these modes will be, in terms of exoplanet characterization (Beichman et al.
2014; Barstow et al. 2015a,b; Batalha et al. 2015; Greene et al. 2016; Rocchetto et al. in press),
little work has been done to speci�cally identify which inst rument modes or combinations of modes
will be most useful for characterizing a diverse range of exoplanetary atmospheres. The most
rigorous way of accomplishing this is through atmospheric retrieval, which links atmospheric models
to the data in a Bayesian framework (Line et al. 2012, 2013a, 2014, 2015; Madhusudhan 2012;
Benneke & Seager 2012, 2013; Waldmann et al. 2015).

For example, Barstow et al. (2015a) simulated an observation with NIRSpec prism and MIRI
Low Resolution Spectrometer (LRS) for four speci�c case studies: a hot Jupiter, a hot Neptune,
GJ 1214, and Earth. For each observation they performed a full retrieval analysis to determine the
prospects for identifying the true atmospheric state of theplanet and assessed the possible e�ects
of star spots and stitching on the results. Greene et al. (2016) also simulated the observations of
four speci�c planet archetypes (hot Jupiter, warm Neptune, warm sub-Neptune, cool Super-Earth)
in three di�erent combinations of modes: NIRISS Single Object Slitless Spectrograph (SOSS) only,
NIRISS+NIRCam, NIRISS+NIRCam+MIRI. They concluded that s pectra spanning 1-2.5� m will
often provide good constraints on the atmospheric state butthat in the case of cloudy or high
mean molecular weight atmospheres a 1-11� m spectrum will be necessary. While both of these
studies o�er insights into the kind of data we will obtain from JWST, they do not yet simulate
observations for a diverse instrument phase space for a widevariety of planet types, mainly driven
by the computational limits of Markov chain Monte Carlo (or r elated) methods. Evaluating a wider
range of planet types and instrument modes, however, is necessary if we want to be able to optimize
our science output with JWST.

To solve this problem, we use information content (IC) analysis, commonly used in studies
of Earth and Solar System atmospheres. As some Earth examples, Kuai et al. (2010) used IC
analysis to determine the 20 best channels from each CO2 spectral region for retrieving the most
precise CO2 abundance measurements obtained with the Orbiting Carbon Observatory. Using the
channels selected from their analysis, they were able to achieve precision better than 0.1 ppm.
Similarly, Saitoh et al. (2009) demonstrated that separately selecting a subset of the 15-� m CO2

channels based on IC analysis, yielded the same precision ontheir retrieved results as the entire
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15-� m band.

IC analysis has also been used with exoplanet spectra. Line et al. (2012) quanti�ed the increase
in information content that comes from an increase in signalto noise and spectral resolving power
for an arbitrary wavelength range, 1-3 � m, and for a single planet case.

Most recently1, Howe et al. (in press) also presented IC analysis as a way to optimize JWST
observations with a simple three-parameter model (uniformtemperature, uniform metallicity, and
opaque cloud deck). They designed 7 di�erent theoretical JWST programs, which range in length
from observing a single mode in a single transit to observingnine modes across nine transits. They
test these programs on a target list composed of 11 targets all with T eq > 958 K, which were
separated into bright (J< 8), medium (8< J< 11), and dim (J> 11) targets. They �nd that MIRI
LRS in slitless mode provides more information than in slit mode. They also found that NIRISS
SOSS consistently provides the most information content for a given integration time compared
with other observing modes. Finally, they conclude that IC analysis is a powerful technique that
can be used for selecting JWST observing modes.

Here we expand this analysis to look at a broader range of planet archetypes ranging from
Teq=600-1800 K, C/O=0.55-1, [M/H]=1-100 � Solar, with no cloud/grey cloudy/haze (84 planet
types), across every possible combination of JWST transit spectroscopy modes. In doing so we
answer the following questions:

1. Is there a mode or combination of modes that will provide more information per unit observing
time?

2. And, does that di�er across di�erent combinations of C/O rat io, [M/H], or temperature?

3. Is it better to sacri�ce wavelength coverage across several di�erent modes or to increase the
precision of a single mode?

4. Is there a point where the addition of more observing modesstops tightening the constraints
on the retrieved model parameters?

In x2 we explain the theory of IC analysis, inx3 we explain the transmission forward models
and our JWST noise estimates. Inx4, we look at the results of the IC analysis and verify the results
using a retrieval algorithm. In x5 we discuss these results and end with concluding remarks inx6.

2. Information Content

In atmospheric retrieval (Chahine 1968; Rodgers 1976, 2000; Twomey et al. 1977) the goal is to
obtain the most likely set of model parameters given a set of observations. The model parameters,

1We became aware of their publication only a few days prior to o ur submission.
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which de�ne the atmospheric state, are just a vector, x , of length n, that is usually composed of
gas mixing ratios, temperature at each atmospheric level, and any other atmospheric parameters
pertinent to the model. The relationship between x and the observations is given by

y = F(xa) + K (x � xa) (1)

where F(x) is the model andxa is the initial guess of the true state (also known as the prior). K
is an m � n Jacobian matrix given by

K ij =
@Fi (x)

@xj
(2)

The Jacobian describes how sensitive the model is to perturbations in each state vector parameter
at each wavelength position.Fi is the measurement in thei th channel andx j is the j th state vector
parameter. The jacobians are numerically computed with a centered-�nite di�erence scheme.

We assume that an exoplanet transit transmission spectrum can be fully described with a 4
parameter state vector: x = [ T; C=O;[M=H ]; � Rp], where T is the isothermal terminator temper-
ature, C=O is the carbon to oxygen ratio, [M=H ] is the log-metallicity relative to solar, and � Rp

is a scaling factor to the reported radius arbitrarily de�ned at 10 bars. This is almost certainly
an overly simplistic description as there are numerous additional processes at play such as atmo-
spheric dynamics, photochemistry, clouds etc. Certainly this analysis can be extended for arbitrary
atmospheric descriptions.

The information content, measured in bits, quantitatively describes how the state of knowledge
(relative to the prior) has increased by making a measurement (Shannon & Weaver 1962; Line et al.
2012). It is computed as the reduction in entropy of the probability that an atmospheric state exists
given a set of measurements:

H = entropy(P(x)) � entropy(P(x jy )) (3)

where
P(x) / e� 0:5(x � x a )T S� 1

a (x � x a ) (4)

P(x jy ) / e� 0:5J (x ) (5)

In (4) Sa is a n � n a priori covariance matrix, which de�nes the prior state of knowledge, e.g., the
uncertainties on the atmospheric state vector parameters before we make a measurement.J (x) is
the cost function which is given by:

J (x) = ( y � Kx )T Se
� 1(y � Kx ) + ( x � xa)T S� 1

a (x � xa) (6)

where Se is the m � m data error covariance matrix. The �rst term in the cost funct ion describes
the data's contribution to the state of knowledge (\chi-squared") and the second describes the
contribution from the prior.
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Assuming Gaussian probability distributions (Rodgers 2000) the information content can be
written in terms of the posterior and prior covariance matrices:

H =
1
2

ln( jŜ� 1Sa j) (7)

and
Ŝ = ( K T S� 1

e K + S� 1
a )� 1 (8)

where Ŝ is the posterior covariance matrix that describes the uncertainties and correlations of the
atmospheric state vector parameters after a measurement ismade.

As an illustrative example relevant to JWST, if we were only interested in deciding between
NIRISS, NIRCam, and MIRI to maximize the total retrievable i nformation (let's say: T, � Rp,
C/O, [M/H]), the goal would be to minimize the elements of Ŝ. Because there will likely be little
prior knowledge on these parameters,Sa

� 1 << K T S� 1
e K , the mode covering wavelengths with the

greatest sensitivity to each of the state vector parameters(maximum values of K ) and the smallest
error (minimum values of Se), will have the lowest values of Ŝ. The relative information content
from one mode to the next under these assumptions will be largely independent ofSa in Eqn. 7.
The mode with the highest value for H will yield the most information of the atmospheric state,
and would thus be considered the optimal mode.

3. Modeling & Retrieval Approach

3.1. Transit Transmission Spectra Models & their Jacobians

We use thechemically-consistent transit transmission approach described in Kreidberg et al.
(2015). Given the temperature-pressure pro�le of the atmosphere and the elemental abundances
parametrized with metallicity, [M/H], and C/O, the model �r st computes the thermochemical equi-
librium molecular mixing ratios (and mean molecular weight) using the publicly available Chemical
Equilibrium with Applications code (CEA, McBride & Gordon ( 1996))2. The thermochemically de-
rived opacity relevant mixing ratio pro�les (H 2O, CH4, CO, CO2, NH3, H2S, C2H2, HCN, TiO,
VO, Na, K, FeH, H 2, He), temperature pro�le, cloud and haze proprieties, and planet bulk pa-
rameters (10 bar radius, stellar radius, planetary gravity) are then fed into a transit transmission
spectrum model (Line et al. (2013b); Greene et al. (2016); Line & Parmentier (2016), using the
Freedman et al. (2008, 2014) opacity database) to compute the wavelength-dependent eclipse depth
at the appropriate instrument spectral resolving power. For cloudy simulations, we assume a hard
gray cloud top pressure set to be at the 1 mbar pressure level,below which the transmittance is
set to zero and use the \Rayleigh Haze" power law parameterization (Lecavelier Des Etangs et al.
2008) to describe hazes.

2https://www.grc.nasa.gov/WWW/CEAWeb/
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This simplistic treatment of clouds and hazes is motivated by WFC3+STIS observations
(Kreidberg et al. 2014b; Knutson et al. 2014; Sing et al. 2016), in which simple gray cloud top
pressures, and power law parameterizations are su�cient to�t the data. Additionally, more com-
plex cloud model parameterizations are not suitably motivated by the data and our generally poor
understanding of the very complex coupled, 3D-dynamical-radiative-microphysics in non-Earth-like
planets (e.g. Lee et al. 2015). A 1 mbar pressure level was chosen arbitrarily so that the absorption
features as viewed in transmission were muted, but not completely masked, as demonstrated in
(Iyer et al. 2016). While perhaps an overly simplistic cloudmodel, it still allows us to assess which
modes are the most susceptible to a loss of information content because of the presence of clouds.
We emphasize that the goal is not to identify the ideal setup for characterizing clouds and hazes,
but rather the inuence that clouds of some form can have on our ability to extract other useful
quantities. We discuss this further in Section 5.3.

For all initial state vectors, x, we assume a planet radius of R=1.39 RJ and mass of M=0.59
MJ around WASP-62 (Teq=6230.0 K, F7, 1.28 R� ). The WASP-62 system was chosen because it
was identi�ed as a potential target for the JWST Early Release Science (Stevenson et al. 2016) and
because it has a magnitude that does not saturate the instrument modes explored here (J=9.07).
Howe et al. (in press), in contrast, did explore ranges in stellar magnitudes and found that the
NIRSpec prism, which not explored here, is the best mode for faint sources.

We do not explore parameter space in planet radius and mass, because changes in radius will
a�ect the spectrum uniformly in wavelength space and we assume that the mass will be known
for planets we observe with JWST. Changing the star will a�ect the error pro�les because of the
di�erent SED peaks and the di�erent stellar magnitudes. These e�ects will be minor compared to
the e�ects that come from changing the planetary atmosphere parameters. Therefore, we �x the
stellar type as well.

We explore 7 temperatures ranging from Teq = 600-2000 K, 2 C/O ratios (0.55 and 1) and two
metallicities (1 and 100� Solar). The ranges in C/O and [M/H] were chosen to represent adiverse
set of chemical compositions (Madhusudhan 2012;?). In contrast, Howe et al. (in press) is limited
to T eq > 958 K and do not explore di�erent C/O ratios. We explore three di�erent cloud scenarios:
no clouds, grey cloud, and power-law haze. For each of these 84 combinations of planet types, we
compute a separate Jacobian.

We choose eight representing planet types to display our results: T = 1800 K (Figure 1, red)
and T = 600 K (Figure 1, blue) with C/O=0.55 and 1, and with [M/H ]=1 � Solar and 100� Solar.
Figure 2 shows the Jacobian for di�erent C/Os and [M/H]'s at T= 1800 K (at a resolving power,
R=100). Because each combination of C/O and [M/H] have very di�erent Jacobians, instrument
mode selection must be optimized without making assumptions about the atmospheric composition
of the planet a priori .
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3.2. JWST Noise Models

To create noise simulations we use the beta version of Space Telescope Science Institutes online3

Exposure Time Calculator. Therefore, noise estimates are expected to change as the �nal release
date approaches as ithas not yet been veri�ed against instrument team's calculations. The JWST
ETC includes the most up-to-date estimates for background noise, PSFs, wavelength-dependent
instrument throughputs, optical paths, and saturation levels. It does not include estimates of
residual systematic noise oors. It currently supports all o�cially-supported JWST observing
modes and provides one-dimensional calculations of ux andbackground rates (e� /s) per resolution
element, F� and B � , respectively.

To calculate the duty cycle, d, we must determine the total number of allowable groups per
integration, ngrp , before detector saturation. In JWST's MULTIACCUM readout scheme, a group
is a set of consecutively read frames separated by a reset frame. All exoplanet observations will have
a single frame per group. Therefore, to maximize the duty cycle we maximize the number of groups
per integration. The number of groups is related to the duty cycle via the relation, d = ngrp � 1

ngrp +1 .
We step up the number of groups in the JWST ETC until we reach a point of saturation for each
instrument mode. For WASP-62-like target, which has a J-magof 9.07, we calculate duty cycles
that are all > 75% for all the instrument modes. We do not compute noise simulations for the
NIRSpec prism because of saturation limitations.

With the number of groups, the total shot noise on the star canbe computed via:

� 2
shot;� = Fin;� � t in + Fout;� � tout (9)

Where the Fout;� is the count rates computed from the JWST ETC for WASP-62 in e� /s, and
Fin = Fout;� (1 � R2

p;� =R2
� ;� ). R2

p;� =R2
� ;� is calculated from the model outlined in x3.1. t in is total

transit duration (2 hours) multiplied by the duty cycle, whi ch gives the total on source-time. We
assume that equal time is spent observing in and out of transit so that t in = tout . Therefore, we
assume the light curve is equivalent to a step function and donot fully model the ingress and egress.

We also include readnoise and background noise so that the total noise is:

� 2
tot;� =

1
(Fout;� tout )2 (� 2

shot;� + B � (tout + t in ) + RN 2npix n int ) (10)

Where B � is the count rate of the background (observatory background+dark current) in e � /s,
computed with the JWST ETC, npix is the number of extracted pixels andn int is the number of
integrations in the entire transit observation (4 hours). RN is the readnoise. We useRN =18e� for
the HgCdTe detectors (NIRISS, NIRSpec, and NIRCam), andRN = 28e� for MIRI (Greene et al.
2016). Eqn. 10 is used to create the error covariance matrices, Se in Eqn. 8.

3https://devjwstetc.stsci.edu
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4. IC Analysis Results

Before we compute the IC of certain instrument modes, we can predict what wavelength
regions are going to hold the most information. This will give us intuition for why certain modes
are better suited for constraining atmospheric parametersthan others. To do this, we start by
computing the IC of a synthetic observation of R=100, assuming a precision of 1 ppm, across the
full JWST wavelength region 1-12� m. Then, we sequentially remove each R=100 bin from the
spectrum and recompute the IC. Figure 3 shows the loss of IC from the removal of each R=100
element for representative temperature-C/O-metallicity combinations. Regardless of temperature
and chemistry, the removal of spectral elements near 1-1.5� m and 4-4.5� m always results in the
greatest loss of IC.

The only mode that contains both of these wavelength regionsis the NIRSpec prism. The
prism will undoubtedly be widely used for exoplanet spectroscopy however, it has a high saturation
limit (J < 10.5) and a low spectral resolving power of R� 100. We constrain our future discussion
to the modes shown in Table 1 because we assume that the observer will usually pick the prism
for transmission spectroscopy if their target is dim enoughand if a low spectral resolving power is
su�cient for retrieving their desired atmospheric paramet ers.

Modes that only contain 1-1.5� m include NIRSpec G140M/H, and NIRISS SOSS. Modes that
only contain 4-4.5� m are NIRCam F444, and NIRSpec G395M/H. While this is informative, it
does not directly dictate which modes hold the highest IC. Next, we compute, for each individual
mode, the increase in information content as a function of increasing signal-to-noise.

4.1. Single Mode Analysis

Computing the increase in IC as a function of precision on theplanet spectrum will tell us how
much information we are losing for each instrument mode as the precision on the spectrum decreases.
This decrease is usually the result of less observing time, adimmer target, stellar variability or
instrument systematics/noise oors. For each calculation we assumed there were constant errors
across the wavelength range of the instrument mode. This assumption is only used in the section in
order to explore the exact relationship between the error onthe retrieved parameters and the error
on a spectrum. In reality, all JWST instruments will have hig hly wavelength-dependent throughputs
with sharply declining edges. To minimize the e�ects of this on this particular analysis we do not
use the edges of the observation bands where the noise increases sharply. Lastly, the conclusions
made in this section are later veri�ed by full noise simulations.

Each panel in Figure 4 shows this function for a di�erent chemical con�guration and temper-
ature. The opaque lines are calculations with no clouds and the transparent lines are calculations
with a grey cloud at 1 mbar. Interpreting these plots is done best by picking a �xed IC and looking
to see what precision each mode needs in order to attain that level of IC. For example, for 1� Solar,
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C/O=0.55, the observer needs a high precision of 7 ppm with NIRCam F322 to achieve an IC=25
bits. If the observer were to choose NIRISS SOSS instead, to achieve IC=25 bits, they would only
need to achieve a precision of 30 ppm.

In all four temperature, chemical con�gurations, and cloud assumptions, NIRISS SOSS (pur-
ple) has the highest IC and NIRCam F322W2, and F444W (green) have the lowest. The simplest
way to understand this is by analyzing Figure 2. NIRISS SOSS covers a large wavelength space
speci�cally over points that hold a lot of information (stro ng absorption features). The latter state-
ment is especially important. MIRI LRS, for example, coversan even larger wavelength space but
over points that hold less information than those in NIRISS SOSS (weaker absorption features).
Because of MIRI LRS' larger wavelength coverage, it holds the second highest IC content in most
temperature/chemistry con�gurations. We discuss these results further in the x5.

Adding in clouds (transparent lines) decreases the total ICof each mode and in some cases,
changes their relative ranking. In general, shorter wavelength modes lose more IC because of clouds
as opposed to than longer wavelength modes. This is clearly seen in the case of Figure 4 T=1800
K, C/O=1 & 1 � Solar. NIRSpec G140M/H loses up to� 10 bits of information with the addition
of clouds whereas the other modes only lose� 5 bits. This is as expected, a grey opacity source will
strongly mute absorption features at shorter wavelengths (< 2� m), while longer wavelengths will
be less a�ected. NIRSpec G140M/H covers 1-2� m. NIRISS SOSS is less susceptible to this loss
of IC because of its extended coverage out to 2.8� m.

Although it is useful to compute the IC of each mode for generic mode comparison purposes,
it does not directly tell us what the precisions on the desired parameters (T, C/O, [M/H]) will be.
For this we can look at the diagonal elements of the matrixŜ, Eqn. 8, which we show below are
an accurate enough description of the parameter uncertainties .

4.2. Validation of Covariance Matrix Approximation Against Full Retrievals

A potential issue in our analysis is the assumption of the Gaussianaity of the posterior, de-
scribed via the covariance matrix Ŝ (e.g., see Benneke & Seager (2012) for a discussion). This can,
for instance, happen when a parameter is not constrained other than an upper limit. The covari-
ance matrix approximation within the optimal estimation fr amework would try to approximate
such upper limits with a Gaussian, possibly over, or underestimating the uncertainties. However,
here we validate this assumption in our atmospheric parametrization and data regimes by per-
forming full retrievals (e.g., Benneke & Seager (2013); Line et al. (2013a); Waldmann et al. (2015);
Line & Parmentier (2016)) using PyMultiNest (Buchner 2016) on select cases. These results are
summarized in Figure 5. The circles in Figure 5 show the errors on the parameters as a result
of the PyMultiNest retrieval described above. They indicate that the covariance matrix estimated
error analysis and the full retrieval generally agree for the relevant parameters over a wide range
of spectral uncertainties.
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As an illustrative example, the curves in Figure 5 show the relationship between parameter pre-
cision, data error, and information content for NIRISS SOSSfor the case of T=1800 K, C/O=0.55
& 1� Solar (red) and T=600 K, C/O=1 & 100 � Solar (blue). For both cases, a loss in 10 bits of
information translates to a factor of � 10 increase in the error on the atmospheric parameters (i.e.
for T=1800 K, � T = 4 with 30 bits of IC and � T = 40 with 20 bits of of IC). This result can be
readily understood by inspecting Eqn. 7. If uncertainties on all parameters decrease by 10, then
the diagonal elements of̂S decrease by a factor of 100. The determinant of the 4� 4 Ŝ matrix then
increases by a factor of 108, where one half of the natural log of 108 is 9. As another reference
point, an IC di�erence of � 3 corresponds to a factor� 2 improvement in the constraints on each
of the 4 parameters.

Also shown in Figure 5 (with asterisks) arePyMultiNest retrievals for the case of an observation
with NIRISS SOSSand NIRSpec G395M. This reveals that expanding wavelength coverage to two
observation modes results in a lower error than two observations in the same mode. The error on
the temperature of a 30ppm observation with NIRISS and NIRSpec G395M (horizontal line) is less
than the error on the temperature of a 30=

p
(2)ppm (vertical line) observation with only NIRISS

SOSS. Additionally, a factor of
p

(2) improvement in the noise is only valid in the case of little
systematic noise. In thex5.2 we explore this further.

4.3. Two Mode Analysis

Not counting modes with overlapping wavelength space, there are approximately 8!� 40,320
combinations of modes on board JWST for exoplanet spectroscopy alone. In order to narrow down
these combinations, we �rst focus on only two mode comparisons in transmission, for the two
temperature cases. Instead of �xing the noise as was done inx4.1, we compute full noise models
for a single transit in each mode.

The IC maps shown in Figs. 6 & 7 can be easily interpreted by �nding the combination of
modes which, regardless of C/O or [M/H], give the highest information content (i.e. common dark
regions in all four panels). We only show the maps for the cases where a 1 mbar cloud has been
added because for most combination of modes, the cloudy and cloud-free cases are similar.

For hotter targets (T=1800 K, Figure 6), the combination of N IRISS and NIRSpec G395M/H
yields the highest information content regardless of temperature, C/O and [M/H]. Other combina-
tions of modes such as 2 transits with NIRISS SOSS, NIRSpec G140M/H+G395M/H, and NIRSpec
G140M/H+G235M/H also yield high IC observations.

The combinations with the lowest IC are 2 transits with MIRI L RS, NIRCam F444, or NIRCam
F322. The di�erence between the highest IC combination and the lowest IC combination is � 4
bits. From Figure 5, we can estimate this to be about a factor in � 3 degradation in the error
on T, C/O, and [M/H]. Meaning, an observation with NIRISS and NIRSpec G395M/H will help
constrain these parameters� 3 times better than an observation of two transits with MIRI L RS.
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For cooler targets (T=600 K, Figure 7), the results are similar. NIRISS and NIRSpec G395M/H
have the highest IC while two transits with MIRI LRS, or NIRCa m F444 have the lowest. The
di�erence, in bits, between the highest IC and the lowest IC mode is also� 4 bits. Therefore, as
with the T=1800 K target, it is predicted that this di�erence w ill cause a factor in � 3 degradation
in the error on T, C/O, and [M/H].

4.4. Multimode Analysis

Beyond two modes, one could pose the question of whether or not adding a third or fourth
mode would help tighten the constraint on the atmospheric state. Three modes (NIRISS, NIR-
Spec G395M/H, & MIRI LRS) will get you across the entire JWST spectroscopic range, 1-12� m.
However, it might be the case that a spectrum from 1-5� m will give you the same constraints as a
spectrum from 1-12� m, because of a saturation in information. If this is the case, it might be more
bene�cial to increase precision in one mode. To test this, wesequentially add a mode and compute
the expected errors on each of the state vector parameters.

Figs. 8 & 9 show these results for all chemical con�gurationsand T=1800 K and 600 K, respec-
tively. Starting out, an observation with just NIRSpec G140M/H has relatively poor constraints
(for reference, this is equivalent in wavelength space to anobservation with the Hubble Space Tele-
scope's WFC3). With the addition of NIRISS SOSS, which e�ectively improves the precision of
the 1-1.7� m region and adds the 1.7-2.7� m region, the constraints on T, [M/H] and C/O improve
by nearly a factor of 2.

Adding an observation with NIRSpec G235M/H does not signi�cantly add any new wavelength
space, but e�ectively increases the precision of the observation in the 1.7-3� m region. This results
in only a small improvement of the constraints on the atmospheric state.

Next, adding in NIRSpec G395M/H e�ectively expands the wavelength coverage of the ob-
servation out to 5� m and again, in some cases, nearly tightens the constraints of the atmospheric
state by a factor of 2. After the addition of NIRSpec G395M/H, adding in NIRCam F322, and
F444 does not help because even though the precision of the observation increases in the 3-5� m
region, no more wavelength coverage is being added.

Lastly, the addition of an observation with MIRI LRS does not result in an improvement in the
constraint of the atmospheric state. This is unintuitive because the wavelength region is increased
out to 12� m. In this case, we have already maximized the total retrievable information from
the combined observation of NIRISS SOSS and NIRSpec G395M/H. These results are similar to
those found in Greene et al. (2016): Adding MIRI LRS did not signi�cantly improve the molecular
abundance constraints for transit transmission spectra. However, observing targets in emission
with LRS could signi�cantly improve observations of target s with cloudy transmission spectra
(Morley et al. 2015). We further discuss this in x5.3.
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5. Discussion

5.1. Why NIRISS SOSS + NIRSpec G395M/H?

In transmission, regardless of temperature, C/O, [M/H] or presence of a cloud, a combination
of NIRISS+NIRSpec G395M/H yields the highest information content. Intuitively this makes sense
because the combination of the two give relatively broad (1-5 � m) wavelength coverage, more so
than other combinations. These wavelength regions are the locations of the spectrum with the
highest rate of change with respect to the state vector parameters (the elements of the Jacobian
are the highest, Fig 2). This is because these wavelengths cover the prominent absorption features
of the metallicity and C/O dependent species (e.g., measuring both oxygen and carbon-bearing
compounds). The key 4.5� m region probes CO and CO2 which are powerful metallicity indicators
(e.g., Moses et al. (2013)).

NIRCam F322W2 and F444W do not yield high information content results because F444W
covers too small of a wavelength region to be useful on its ownand F322W cannot capture the
presence or absence of carbon based species (CO2 or CO). If the observer knew a priori that
a carbon species would be present, it could help constrain [M/H] and C/O to get high spectral
resolving power observations in that region{especially since NIRSpec G395M's photon-to-electron
conversion e�ciency starts to drop o� after 4 � m. Noise simulations will have to be done on a case
by case basis to assess this trade o�.

Because the highest information contents per unit observing time are a result of the broad
wavelength coverage and not necessarily the precision, theobserver could swap out the combination
of NIRISS+G395M/H for the NIRSpec prism. The NIRSpec prism was not explored in this paper
because it has a very high saturation limit (J< 10:5). Therefore, some of the best JWST targets will
saturate the NIRSpec prism. We conclude that if the target isdim enough, it should be observed
with the prism instead of NIRISS SOSS and NIRSpec G395M/H.

5.2. Why wavelength coverage over precision?

We can revisit Eqn. 7 to gain analytical insights into the question of increased precision
versus wavelength coverage. The information content is related to the error covariance matrix
by, H / ln jSe

� 1j. If we were to both expand wavelength coverage, by increasing the number of
observation points to N , and reduce the error by some factor,f , the new information content would
go as, Hnew / N ln 1

f 2 . A second transit in the same mode would only increase the precision by

at most
p

2, which increase the IC by ln 2. This would be less in the case of signi�cant systematic
noise. Doubling the number of points, on the other hand, should have a much larger impact on the
total IC. This is shown in Figs. 7 and 8. An increase in the precision does decrease the overall errors
on the state vector parameters, but not as much as an increasein the total number of wavelength
points.
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5.3. Saturation of Information

The argument of improving parameter constraints by increasing wavelength coverage seems to
break down for MIRI LRS, shown in Figs. 7 and 8. In these cases,we are expanding wavelength
coverage but are seeing no improvement in the errors on the state vector parameters. This is
because the 1-5� m coverage is already enough to cover the prominent metallicity and C/O sensitive
absorbers. If this were always true, MIRI LRS would never be useful, if combined with NIRISS
and NIRSpec G395M. However, there are several important keymodeling aspects not included in
this investigation.

Firstly, we have not accounted for disequilibrium chemistry (vertical mixing and photochem-
istry). This will a�ect planets below 1200K. As an example, the strong 9-12� m ammonia feature
is very sensitive to the strength of vertical mixing, as demonstrated by brown dwarf observations
(e.g., Saumon et al. (2006)). Similarly, obtaining a secondmethane band at 7.6� m will also provide
further leverage on the strength of vertical mixing for planets with a carbon reservoir transition-
ing between CO and methane. Furthermore, methane derived photochemical products like C2H2,
C2H6, and C2H4 all have multiple bands long-wards of 5� m. These longer wavelengths may be
diagnostic of photochemistry (e.g., Moses et al. (2011)).

Second, high temperature condensate clouds might exist in super-hot Jupiter atmospheres
(Wakeford et al. 2016). The vibrational-mode absorption features of these condensate clouds are
only detectable in the 5-14� m region (Wakeford et al. 2015; Molliere et al. 2016). Shorter wave-
lengths are only sensitive to the Mie/Rayleigh scattering slopes/magnitudes of these condensates.
The composition at these shorter wavelengths is in turn degenerate with the particle sizes. There-
fore, if this is true, MIRI LRS will be crucial for understand ing cloud properties by uniquely
identifying their spectral signatures.

Lastly, emission spectroscopy of will rely heavily on MIRI LRS, especially the coolest planets
(e.g, Greene et al. (2016)). The IC analysis for emission spectroscopy is currently being explored
as future work.

6. Summary & Conclusion

Using a transmission spectra model, we �rst computed how sensitive the transmission spectrum
of di�erent planetary atmospheres are to small changes in temperature, C/O, [M/H] and � Rp.
These sensitivities make up the Jacobian, which allowed us to compute the information content of
each spectrum. The information content, measured in bits, describes how the state of knowledge
(relative to the prior) has increased by making a measurement. Therefore, we then sought to �nd
observing schemes that were agnostic to unknowna priori knowledge of the atmospheric state.

First, using only single mode combinations, we computed theIC content as a function of
spectral precision on a spectrum for all the JWST exoplanet spectroscopy modes within NIRISS,
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NIRSpec, NIRCam, and MIRI. We also estimated the errors expected on each of the atmospheric
state vector parameters by computing the posterior covariance matrix. We validated this approach,
which makes the assumption of Gaussianity of the posterior,against full Monte Carlo based re-
trievals. We then extended our IC analysis to combinations of two modes. Finally, we explored the
e�ect of adding more than two modes. Our major conclusions aresummarized below are true for
transmission spectra only:

1. A single observation with NIRISS always yields the highest IC content spectra with the
tightest constraints, regardless of temperature, C/O, [M/H], cloud e�ects or precision.

2. A single observation with NIRSpec G140M/H is most susceptible to a loss of information via
cloud coverage and should generally not be used alone.

3. Generally speaking, expanding wavelength coverage willresult in more tightly constrained
parameters than observing in the same mode twice.

4. An observation with both NIRISS and NIRSpec G395M/H always yields the highest IC
content spectra with the tightest constraints, regardlessof temperature, C/O, [M/H], cloud
e�ects or precision. NIRSpec prism, which covers the same wavelength space, could also be
used in lieu of NIRISS and NIRSpec G395M/H, if the target is dim enough, J> 10.5.

5. Observations that use more than two modes, should be carefully analyzed because sometimes
the addition of a third mode results in no gain of information. In these cases, higher precision
(more transits) in the original two modes would be more favorable.

JWST is scheduled to launch in October, 2018. After commissioning we will have a much better
idea of what the inherent systematics are for each of the exoplanet spectroscopy modes. However,
proposals for early release science are due in August, 2017.Therefore, until our knowledge of
instruments improve, we can use powerful IC analyses to design optimized observing strategies for
future proposals.

We especially thank Avi Mandell for providing invaluable expertise and insight on JWST noise
simulations and useful discussions. We also thank Thomas Greene & Hannah Wakeford for their
helpful comments on the paper. This material is based upon work supported by the National
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and NASA Astrobiology Program Early Career Collaboration Award to N.E.B. Any opinions,
�ndings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reect the views of the National Science Foundation. M.R.L. acknowledges
support provided by NASA through Hubble Fellowship grant 51362 awarded by the Space Telescope
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Table 1: Instrument modes
Instrument Filter Wavelength Range Spectral Resolving Power

(� m)
NIRISS SOSS 0.6-2.8 400-1400
NIRSpec G140M F070LP 0.9-1.8 600-1400
NIRSpec G235M F170LP 1.70-3.0 600-1400
NIRSpec G395M F290LP 2.9-5 600-1400
NIRCam Grism F322W2 2.5-4.0 1000-1770
NIRCam Grism F444W 3.9-5.0 1770-2200
MIRI LRS 5.0-14 100
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